ich war hier: TutoriumMathe3L3

Version [73022]

Dies ist eine alte Version von TutoriumMathe3L3 erstellt von Jorina Lossau am 2016-10-12 09:20:26.

 

Tutorium Mathematik 3


Fortgesetztes Integrieren - Lösungen



 (image: https://ife.erdaxo.de/uploads/TutoriumMathe3L3/Mathe3L31.jpg)
 (image: https://ife.erdaxo.de/uploads/TutoriumMathe3L3/Mathe3L32.jpg)
 (image: https://ife.erdaxo.de/uploads/TutoriumMathe3L3/Mathe3L33.jpg)
 (image: https://ife.erdaxo.de/uploads/TutoriumMathe3L3/Mathe3L34.jpg)





1. Differentialgleichungen

1.1 Lösen Sie die folgenden Differentialgleichungen durch fortgesetztes Integrieren!

Aufgabe 1.1.1

y=tsin(t)+3√(t+1)
Lösung:
y=tsin(t)+3√(t+1) I ∫(...)dt
y=∫(tsin(t)+3√(t+1))dt
y=∫tsin(t)dt+3∫√(t+1)dt
NR: ∫xsin(ax)dx=(sin(ax)/a^2)-(xcos(ax)/a)
∫√(ax+b)dx=2/3a√((ax+b)^3)
y=sin(t)-tcos(t)+2√((t+1)^3)+K (allg. Lösung)
y(0)=4->4=sin(0)-0+2√1+K->K=2
y=sin(t)-tcos(t)+2√((t+1)^3) (spez. Lösung)

Aufgabe 1.1.2
y(2 Strich)=xe^2x+3e^-x;y(0)=1;y'(0)=0
Lösung:
y(2 Strich)=xe^2x+3e^-x I ∫(...)dx
NR: ∫xe^(ax)dx=((ax-1)/a^2)e^ax
y'=(1/2x-1/4)e^2x-3e^-x+K1
y'=1/2xe^2x-1/4e^2x-3e^-x+K1 I ∫(...)dx
y=(1/4x-1/8)e^2x-1/8e^2x+3e^-x+K1x+K2
y=(1/4x-1/4)e^2x+3e^-x+K1+K2 (allgem. Lösung)
y(0)=1->1=-1/4e^0+3e^0+K2->K2=-1,75
y'(0)=0->0=-1/4e^0-3e^0-3e^0+K1->K1=3,25
y=(1/4x-1/4)e^2x+3e^-x+3,25x-1,75 (spez. Lösung)

Aufgabe 1.1.3
y(3 Strich)=2x-4+√(2x+3); y(3)=5; y(11)=9; y'(3)=1
Lösung:
y(3 Strich)=2x-4+√(2x+3) I ∫(...)dx
y(2 Strich)=x^2-4x+1/3√((2x+3)^3)+K1 I ∫(...)dx
y'=1/3x^3-2x^2+1/15√((2x+3)^5)+K1x+K2 I ∫(...)dx
y=1/12x^4-2/3x^3+1/105√((2x+3)^7)+K1/2x^2+K2x+K3 (allg. Lösung)
y(3)=5->-4,57857=4,5K1+3K2+K3 (I)
y(11)=9->-1067,798=60,5K1+11K2+K3 (II)
y'(3)=1->-6,2=3K1+K2 (III)
nach Lösung des lin. GS:
K1=-31,675; K2=88,827; K3=-128,52
y=1/4x^4-2/3x^3+1/15√((2x+3)^7)-15,8375x^2+88,827x-128,52 (spez. Lösung)




PDF Dokument Lösungen Fortgesetztes Integrieren


Diese Seite wurde noch nicht kommentiert.
Valid XHTML :: Valid CSS: :: Powered by WikkaWiki