ich war hier: TutoriumMathe3L3

Revision history for TutoriumMathe3L3


Revision [73024]

Last edited on 2016-10-12 10:56:52 by Jorina Lossau
Additions:
||**1. Differentialgleichungen**
**Aufgabe 1.1.4**
y.=e^(-2t)sin(t)+ln(t+1)
Lösung
y.=e^(-2t)sin(t)+ln(t+1) I ∫(...)dt
NR: ∫e^(ax)sin(bx)dx=(e^(ax)/(a^2+b^2))(asin(bx)-bcos(bx))
∫ln(x)dx=xln(x)-x
y=(e^(-2t)/5)(-2sin(t)-cos(t))+(t+1)(ln(t+1)-1)+K (allg. Lösung)
**Aufgabe 1.1.5**
y..=e^(-2t+3t; y(0)=y(0)=2
y..=e^(-2t)+3t I ∫(...)dt
y.=-1/2e^(-2t)+3/2t^2+K1 I∫(...)dt
y=1/4e^(-2t)+1/2t^3+K1t+K2 (allgem. Lösung)
y(0)=2->2=1/4+K2->K2=7/4
y(0)=2->2=-1/2+K1->K1=5/2
y=1/4e^(-2t)+1/2t^3+5/2t+7/4 (spez. Lösung)
**Aufgabe 1.1.6**
u(3 Strich)=3cosh(x)+sinh(x)
u(3 Strich)=3cosh(x)+sinh(x) I ∫(...)dx
u(2 Strich)=3sinh(x)+cosh(x)+K1 I ∫(...)dx
u'=3cosh(x)+sinh(x)+K1x+K2 I ∫(...)dx
u=3sinh(x)+cosh(x)+(K1/2)x^2+K2x+K3 (allg. Lösung)
||
Deletions:
**1. Differentialgleichungen**


Revision [73022]

Edited on 2016-10-12 09:20:26 by Jorina Lossau
Additions:
**1. Differentialgleichungen**
**1.1 Lösen Sie die folgenden Differentialgleichungen durch fortgesetztes Integrieren!**
**Aufgabe 1.1.1**
y=tsin(t)+3√(t+1)
Lösung:
y=tsin(t)+3√(t+1) I ∫(...)dt
y=∫(tsin(t)+3√(t+1))dt
y=∫tsin(t)dt+3∫√(t+1)dt
NR: ∫xsin(ax)dx=(sin(ax)/a^2)-(xcos(ax)/a)
∫√(ax+b)dx=2/3a√((ax+b)^3)
y=sin(t)-tcos(t)+2√((t+1)^3)+K (allg. Lösung)
y(0)=4->4=sin(0)-0+2√1+K->K=2
y=sin(t)-tcos(t)+2√((t+1)^3) (spez. Lösung)
**Aufgabe 1.1.2**
y(2 Strich)=xe^2x+3e^-x;y(0)=1;y'(0)=0
Lösung:
y(2 Strich)=xe^2x+3e^-x I ∫(...)dx
NR: ∫xe^(ax)dx=((ax-1)/a^2)e^ax
y'=(1/2x-1/4)e^2x-3e^-x+K1
y'=1/2xe^2x-1/4e^2x-3e^-x+K1 I ∫(...)dx
y=(1/4x-1/8)e^2x-1/8e^2x+3e^-x+K1x+K2
y=(1/4x-1/4)e^2x+3e^-x+K1+K2 (allgem. Lösung)
y(0)=1->1=-1/4e^0+3e^0+K2->K2=-1,75
y'(0)=0->0=-1/4e^0-3e^0-3e^0+K1->K1=3,25
y=(1/4x-1/4)e^2x+3e^-x+3,25x-1,75 (spez. Lösung)
**Aufgabe 1.1.3**
y(3 Strich)=2x-4+√(2x+3); y(3)=5; y(11)=9; y'(3)=1
Lösung:
y(3 Strich)=2x-4+√(2x+3) I ∫(...)dx
y(2 Strich)=x^2-4x+1/3√((2x+3)^3)+K1 I ∫(...)dx
y'=1/3x^3-2x^2+1/15√((2x+3)^5)+K1x+K2 I ∫(...)dx
y=1/12x^4-2/3x^3+1/105√((2x+3)^7)+K1/2x^2+K2x+K3 (allg. Lösung)
y(3)=5->-4,57857=4,5K1+3K2+K3 (I)
y(11)=9->-1067,798=60,5K1+11K2+K3 (II)
y'(3)=1->-6,2=3K1+K2 (III)
nach Lösung des lin. GS:
K1=-31,675; K2=88,827; K3=-128,52
y=1/4x^4-2/3x^3+1/15√((2x+3)^7)-15,8375x^2+88,827x-128,52 (spez. Lösung)


Revision [43805]

Edited on 2014-08-27 20:56:29 by Jorina Lossau
Additions:
{{image url="Mathe3L31.jpg" width="650" class="center"}}
{{image url="Mathe3L32.jpg" width="650" class="center"}}
{{image url="Mathe3L33.jpg" width="650" class="center"}}
{{image url="Mathe3L34.jpg" width="650" class="center"}}
Deletions:
{{files}}
{{image url="Mathe3L3.jpg" width="600" class="center"}}


Revision [43804]

The oldest known version of this page was created on 2014-08-27 20:48:07 by Jorina Lossau
Valid XHTML :: Valid CSS: :: Powered by WikkaWiki