Version [22500]
Dies ist eine alte Version von BSys07Speicherverwaltung erstellt von RonnyGertler am 2013-03-26 21:44:34.
Betriebssysteme (Betriebssystemtheorie) - Kapitel 7 - Speicherverwaltung
File | Last modified | Size |
---|---|---|
BSys35.gif | 2023-10-06 18:35 | 7Kb |
BSys36.gif | 2023-10-06 18:35 | 7Kb |
BSys37.gif | 2023-10-06 18:35 | 11Kb |
BSys38.gif | 2023-10-06 18:35 | 11Kb |
BSys39.gif | 2023-10-06 18:35 | 11Kb |
BSys40.gif | 2023-10-06 18:35 | 5Kb |
BSys41.gif | 2023-10-06 18:35 | 16Kb |
BSys42.gif | 2023-10-06 18:35 | 5Kb |
BSys43.gif | 2023-10-06 18:35 | 13Kb |
BSys44.gif | 2023-10-06 18:35 | 23Kb |
BSys45.gif | 2023-10-06 18:35 | 23Kb |
BSys46.gif | 2023-10-06 18:35 | 4Kb |
BSys47.gif | 2023-10-06 18:35 | 14Kb |
BSys48.gif | 2023-10-06 18:35 | 9Kb |
BSys49.gif | 2023-10-06 18:35 | 5Kb |
BSys50.gif | 2023-10-06 18:35 | 2Kb |
BSys51.gif | 2023-10-06 18:35 | 12Kb |
BSys52.gif | 2023-10-06 18:35 | 12Kb |
Inhalte von Dr. E. Nadobnyh
7.1 Einführung
Aufgaben der Speicherverwaltung
1) Zuteilung (Allokation) und Freigabe von Speicherbereichen für mehrere Adressräume.
2) Die Abbildung der logischen Adressen auf die physische Adresse.
3) Führung einer Übersicht über freie und belegte Teile des Arbeitsspeichers.
4) Speicherbereinigung und Speicherverdichtung.
5) Auslagerung von Speicherbereichen auf einen Sekundärspeicher.
6) Speicherschutz der Adressräume von unbefugten Speicherzugriffen anderer Prozesse.
Grundbegriffe
1) Eine logische Adresse (Programmadresse) wird von einem Prozess generiert und von der CPU verwendet. Sie ist z.B. der Inhalt des Zeigers.
2) Eine physische Adresse (Speicheradresse) wird beim Speicherzugriff verwendet.
Varianten der Speicherabbildung
1) Mit der vollständigen oder unvollständigen Belegung.
Eine vollständige (komplette) Belegung findet statt, wenn das gesamte Programm in den Speicher geladen wird.
2) Mit der kontinuierlichen oder diskontinuierlichen Belegung.
Eine kontinuierliche Belegung findet statt, wenn verschiedene Teile des Programms zusammenhängend im Speicher platziert werden.
3) Mit oder ohne Auslagerung.
Eine Auslagerung ist eine regelmäßige Speicherung des Programms vom Hauptspeicher in Sekundärspeicher, z.B. auf die Festplatte und zurück.
⇒ Demo 1
Überblick
1) Realer Speicher: Ein Prozess kann nur dann laufen, wenn sich sein Adressraum vollständig im Speicher befindet.
2) Virtueller Speicher: Ein Prozess kann auch dann laufen, wenn sich nur ein Teil seines Adressraums im Speicher befindet.
7.2. Realer Speicher
Systeme ohne Speicherabstraktion
Im Hauptspeicher steht das Betriebssystem und ein einziges Anwenderprogramm.
Besonderheiten:
1) Logische und physische Adressen sind gleich.
2) Physische Adressen können zur Übersetzungszeit schon bekannt sein.
3) Es gibt keinen Speicherschutz. Ein Fehler im Anwendungsprogramm kann das Betriebssystem aushebeln, wenn es sich nicht im ROM befindet.
4) Diese Technik ist für Monoprogrammierung (Singletasking, Einprogrammbetrieb) geeignet und wird heute höchstens in einfachen eingebetteten Systemen verwendet. Frühes Beispiel: MS-DOS.
Variable Partitionierung
Definition:
Variable Partitionierung (Partitionierung variabler Größe) ist eine dynamische Aufteilung des Speichers in eine variable Anzahl von Bereichen variabler Größe.
Sachverhalt:
1) Speichersystem bedient die beliebige Reihenfolge von Reservierungen und Freigaben.
2) Reservierungen fordern Bereiche mit verschiedenen Größen.
Legende: P1, P2, P3, P4 – Prozesse.
Zeitpunkte:
- Drei Prozesse am Laufen.
- Prozess P1 endet. Freigabe. Lücke entsteht.
- Prozess P4 kommt. Reservierung. Neue Lücke entsteht.
- Prozess P2 endet. Rekombination von zwei Lücken
Dynamische Relokation
Bei der Partitionierung wird die Anfangsadresse eines Programms erst zur Ladezeit bekannt. Damit wird auch die Adresstransformation erst zur Ladezeit möglich.
Dynamische Relokation ist eine Technik für die Speicherabbildung zur Laufzeit:
1) Der Adressraum jedes Prozesses wird komplett in den Speicher geladen.
2) Die Adresstransformation findet bei jedem Speicherzugriff statt. Zu der logischen Adresse wird der Inhalt eines Basisregisters (oder Relokationsregisters) addiert. Das Basisregister enthält die physikalische Partitionsstartadresse.
Das Programm kann auch zur Laufzeit mit logischenAdressen arbeiten.
3) Für die korrekte Speicherabbildung ist der Zugriffsschutz notwendig. Bei jedem Speicherzugriff wird überprüft, ob die Adresse
innerhalb des Adressraums liegt. Dazu dient ein Grenzregister (Schutz-Register, Limitregister), das die Größe des Adressraums enthält.
4) Beim Prozesswechsel werden beide Register umgesetzt.
Bemerkungen:
1) Dynamische Relokation bietet eine Abstraktion vom physischen Speicher. Die Speicherverwaltung ist für den Programmierer transparent.
3) Eine frühere Lösung war die statische Relokation. Dabei werden alle Adressen im Programm reloziert, wenn das Programm in den Speicher geladen wird.
Swapping
Grungidee: Wenn ein Prozess im Moment keine Rechenzeit benötigt, dann wird sein Adressraum komplett in Sekundärspeicher ausgelagert.
Verwendung:
1) Diese Technik wurde in Systemen ohne Speicherabstraktion verwendet, um mehrere Programme gleichzeitig auszuführen.
2) Swapping lässt sich mit variabler Partitionierung kombinieren:
- Bei Speichermangel werden Prozesse ausgelagert.
- Die freigewordenen Speicherbereiche werden für neue oder für ausgelagerte Prozesse genutzt.
- Die Gesamtzahl der gestarteten Prozesse entspricht nämlich der Summe der ausgelagerten und nicht ausgelagerten Prozesse.
- Swapping wurde bei älteren Unix-Systemen eingesetzt.
7.3.Freispeicherverwaltung
Grundidee
Das Ziel der Verwaltung des freien Speichers (dynamische Speicherbereitstellung) ist die effiziente Nutzung des realen Speichers. Dabei sollen die Zeit der Speicherzuteilung und die Fragmentierung minimiert werden.
Eine externe Fragmentierung (Zerstückelung, Verschnitt, Zersplitterung) ist ein Speicherzustand mit den schlecht nutzbaren Lücken. Im Laufe der Zeit entstehen überall im Speicher freie Bereiche, die teilweise zu klein sind, um Adressräume hineinladen zu können. Dabei kann eine neue Reservierung nicht erfüllt werden, obwohl insgesamt genügend Speicher frei ist.
Eine interne Fragmentierung ist der ungenutzte Teil des zugeteilten Speicherbereiches.
Einige Techniken
1) Speicherverdichtung (Kompaktierung, Verschiebung) ist eine Technik, bei der alle belegten Bereiche umkopiert werden, so dass nur eine große Lücke vorhanden ist.
Nachteil: Diese Technik ist zeitfressend und wird normalerweise nicht eingesetzt.
2) Abrundung: Wenn der Rest der Lücke zu klein ist, dann wird ganze Lücke reserviert.
Vorteil: Im Speicher entstehen keine kleine Lücken
Nachteil: Interne Fragmentierung.
3) Speicherbereinigung (Garbage Collection): Freigabe und aufwendige Rekombinationen werden automatisch zu einem späteren Zeitpunkt durchgeführt.
Vorteil: Optimalerweise findet eine Speicherbereinigung immer in Leerlaufphasen statt.
Belegungsstrategien
Belegungsstrategien (Allokations-Algorithmen) sind Algorithmen, die nach einer passenden Lücke im fragmentierten Speicher suchen.
1) Sequentielle Belegungsstrategien, welche eine einzige Liste oder andere Datenstruktur für alle Lücken führen.
2) Strategien mit festen Größenklassen (separierten Freilisten), welche mehrere Listen für verschiedene Lückengrößen führen.
Sequentielle Belegungsstrategien
Name | Die Suche beginnt | Gesuchte Lücke | Erzeugte Lücken |
First Fit/ Last Fit | am Speicheranfang | erste/ letzte | Kleine Lücken entsteh- en am Anfang/am Ende des Speichers |
Next Fit | am letzten allokierten Bereich. | erste | Kleine Lücken sind gleichmäßig überall. |
Best Fit/ Worst Fit | am Speicheranfang | kleinste/ größte | Tendiert zum Erzeugen kleiner/großer Lücken |
Vorteile: Es gibt keine innere Fragmentierung.
Nachteile:
- Wesentliche externe Fragmentierung.
- Sequentielle Algorithmen sind langsam, besonders Best Fit und Worst Fit.
Sequentielle Belegungsstrategien. Beispiel
1) Ausgangssituation(in MB):
Strategien mit separierten Freilisten
1) Quick Fit führt mehrere getrennte Listen für verschiedene Lückengrößen. Diese Strategie ist sinnvoll, wenn alle Anforderungen von gleichen oder bestimmten häufig benötigten Größen sind.
Vorteile:
- Diese Strategie ist extrem schnell bei der Reservierung.
- Keine Fragmentierung.
Nachteil:
Rekombination ist aufwendig, weil alle Löcher nicht nach der Adresse, sondern nach der Größe sortiert sind.
2) Buddy–Algorithmus verteilt den Speicher in Größen von Zweierpotenzen. Alle Anforderungen müssen also auf die nächste Zweierpotenz aufgerundet werden.
Vorteil:
Diese Strategie ist extrem schnell bei der Reservierung und bei der Rekombination.
Nachteil:
Interne Fragmentierung ist erheblich (bis 25%).
Buddy-Algorithmus
Verwaltungsdaten:
1) Der Speicher wird in Größen von Zweierpotenzen verteilt. Jede Anforderung muss auf die nächste Zweierpotenz 2k aufgerundet werden.
Eine Anforderung in 280 Bytes wird z.B. auf 29 = 512 Bytes aufgerundet.
2) Für jede Speichergröße wird eine eigene Liste verwendet.Es gibt Listen für die folgende Blockgrößen:
20 , 21 , 22 … 2S Byte, wo 2S - Speichergröße ist.
Anfangs sind alle Listen leer, nur in der 2S -Liste ist ein einziger Block (der gesamte Speicher).
3) Jeder Block wird markiert: reserviert oder frei.
Speicheranforderung:
1) Ein Block 2k wird aus der entsprechenden Liste zugeteilt.
2) Ist kein Block der gewünschten Größe frei, werden schrittweise die höheren Blockgrößen geprüft, bis ein freier Block gefunden wird.
3) Wird kein Block gefunden, wird die Speicheranforderung abgelehnt.
4) Der gefundene Block wird durch iterierte Halbierung soweit zerlegt, bis ein Block der benötigten Größe 2k entsteht.
Bei jeder Halbierung entstehen zwei doppelt kleinere Blöcke der gleichen Größe (Buddies, Kumpel).
Freigabe:
1) Bei jeder Freigabe muss die Rekombination mit den benachbarten Blöcken derselben Größe geprüft werden.
Zwei benachbarte Blöcke der Große 2k mit Adressen x und y sind Buddies, wenn die folgende Bedingung zutrifft:
y == x XOR 2k
Bei der Rekombination entsteht ein Block der doppelten Größe 2k+1.
2) Im Erfolgsfall muss auch die Rekombination der Blöcke mit höherer Größe iteriert geprüft werden.
Beispiel:
(1) Anfänglich besteht der Speicher aus einem kontinuierlichen Block 64 K.
(2) Zwei Anforderungen 8 K fallen an. Der Block 64 K wird dreimal halbiert. Beide Anforderungen werden erfüllt.
(3) Vier Anforderungen 4 K fallen an. Der Block 16 K wird zweimal halbiert und alle Anforderungen werden erfüllt.
(4) Zweite und dritte Blöcke 4 K werden freigegeben. Bei der Rekombinations-Prüfung wird kein Buddy gefunden.
(5) Der erste Block 4 K wird freigegeben. Bei der Prüfung werden zwei Buddies gefunden und rekombiniert.
Belegungsstrategien. Fazit
Keine der Strategien ist ideal, da praktische Situationen sehr unterschiedlich sind.
Zum Beispiel, es sei gegeben:
- zwei Lücken 1300 und 1200 Bytes,
- drei Aufträge 1000, 1100 und 250 Bytes.
Belegung und neu markierte Lücken:
Strategie | 1.Auftrag | 2.Auftrag | 1.Auftrag |
First Fit | 1300-1000= 300 | 1200-1100= 100 | 300-250= 50 |
Best Fit | 1200-1000= 200 | 1300-1100= 200 | Reservierung abgelehnt |
Verwendung der Freispeicherverwaltung
1) für Multitasking in einfachen Systemen, z.B.:
- Belegung mit variablen Partitionen
- Swapping;
2) im Betriebssystem selbst, z.B.:
- für innere Speicherverwaltung
- Speicherzuordnung für Treiber;
3) in Anwendungsprogrammen, z.B.:
- Heap Management.
⇒ Demo 2
7.4. Virtueller Speicher
Definition
Virtueller Speicher ist eine Speichertechnik, bei welcher Adressräume vom Hauptspeicher vollkommen abstrahiert werden.
Die Grundidee ist eine Erweiterung der Speicherkapazität unter Zuhilfenahme externen Sekundärspeicher.
Funktionsprinzip:
1) Im Hauptspeicher befinden sich gleichzeitig nur die Teile von mehreren Adressräumen.
2) Restliche Teile befinden sich auf dem Sekundärspeicher (Hintergrundspeicher, z.B. Festplatte).
3) Die Teile des Adressraums werden zur Laufzeit nur nach Bedarf in den Hauptspeicher eingelagert und auch auslagert.
Eigenschaften
1) Der logische Adressraum jedes Prozesses ist nur durch die Adressbreite begrenzt.
Beispiel: Bei der 32-Bit Adressbreite ist die Adressraumgröße 232 = 4GB. Der Intervall der logischen Adressen ist von 0x00000000 bis 0xFFFFFFFF.
2) Jeder Prozess teilt den Adressraum höchstens mit dem Betriebssystem selbst.
Beispiel: Unter Windows NT wird nur ein 2 GB großen Raum für den Benutzerprozess verteilt.
3) Der Adressraum eines Prozesses kann größer als der real vorhandene Speicher sein. Solche Prozesse werden als „große Prozesse“ bezeichnet.
Beispiel: Die Hauptspeichergröße kann 0,5 GB sein und dann 2>0,5.
⇒ Demo 3.
4) Der logische Adressraum wird als virtueller Adressraum und die logische Adresse als virtuelle Adresse bezeichnet.
5) Ein Programmierer erhält die Illusion, dass er einen Speicher besitzt, welcher größer als Hauptspeicher und so schnell wie Hauptspeicher ist. Dieser illusorische Speicher wird als virtueller Speicher bezeichnet.
6) Nicht benötige Teile können manchmal nie eingelagert werden. Beispiele:
- Die Ausnahmebehandlungsfunktionen werden nur selten aufgerufen.
- Die statisch reservierte Felder werden nicht bei jeder Ausführung vollständig verwendet.
8) Jeder Prozess ist gegen Fehlzugriffe aller anderen Prozesse geschützt.
Bedingungen
Für die Realisierung des virtuellen Speichers sind folgende Voraussetzungen nötig:
1) Programme verfügen über den so genannten Lokalitätseffekt (Lokalitätseigenschaft).
2) Das System verfügt über die passende Speicherhierarchie.
3) Die Adresstransformation muss durch die speziellen Hardware unterstützt werden, z.B. MMU, TLB. Sonst wird die Adresstransformation zu langsam.
Lokalität von Programmen
Definition:
1) Räumliche Lokalität. Wird auf eine bestimmte Adresse im Hauptspeicher zugegriffen, so erfolgt der nachfolgende Zugriff mit großer Wahrscheinlichkeit in der Nachbarschaft.
2) Zeitliche Lokalität. Wird auf eine bestimmte Adresse im Hauptspeicher zugegriffen, wird in naher Zukunft mit großer Wahrscheinlichkeit wieder darauf zugegriffen.
Beispiel:
for(int i=0; i<100; i++) s + =a[i];
Zugriffe auf Elemente des Feldes a[i].
Fazit: Wegen Lokalität wird in einem gewissen Zeitabschnitt
nie der gesamte Adressraum des Programms benötigt.
Speicherhierarchie
Eine Speicherhierarchie ist eine koordinierte Nutzung von verschiedenen Speicher.
Funktionsprinzip:
1) Die verschiedenen Speicherarten werden in Ebenen aufgeteilt (z.B. Register, Cache, Hauptspeicher und Festplatte).
2) Jede Ebene ist schneller, kleiner und teurer (Preis pro Byte) als die Ebene darunter.
3) Alle Daten einer Ebene sind auch in der Ebene darunter enthalten.
4) Daten werden nur zwischen benachbarten Ebenen übertragen.
Das Ziel einer Speicherhierarchie ist es, mit dem großen Speicherbereich einer unteren Ebene zu arbeiten und dieses mit der Geschwindigkeit einer oberen Ebene.
CategoryBSys